
International Journal of Computer Trends and Technology Volume 67 Issue 4, 67-73, April 2019

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V67I4P115 © 2019 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Real-Time Packet in Network Intrusion

Detection System Filtering Module

Kamaljeet Singh1, Umesh Sehgal2

Assistant Professor, Faculty of Computational Science & GNA University , GNA University, Phagwara-

Punjab India

Abstract - Computer networks bring us the benefits,

such as more computing power and better

performance for a given price, and some challenges

and risks, especially in system security. During the

past two decades, significant effort has been put into
network security research, and several techniques

have been developed for building secure networks.

Packet filtering plays an important role in many

security-related techniques, such as intrusion

detection, access control, and a firewall. A packet-

filtering system constitutes the first line of defense in

a computer network environment. The key issues in

the packet-filtering technique are efficiency and

flexibility. Efficiency refers to the ability of a filter to

quickly capture network packets of interest, while

flexibility means the filter can be customized easily

for different packet patterns.
This paper presents a real-time packet-filtering

module, which can be integrated into a large-scale

network intrusion detection system. The core of this

packet-filtering module is a rule-based specification

language, ASL (Auditing Specification Language),

used to describe the packet patterns and reactions for

a network intrusion detection system. The important

features of ASL that are not provided by other packet-

filtering systems are protocol independence and type

safety. ASL provides several new features that

distinguish it from other languages used for intrusion
detection and packet filterings, such as packet

structure description and protocol constraint

checking.

We develop the algorithms and heuristics for

constructing a fast packet filter from ASL

specifications. Our algorithms improve upon existing

techniques in that the performance of the generated

filters is insensitive to the number of rules. We discuss

the implementation of these algorithms and present

experimental results.

Keywords - Sensor Sniffing Tools, NF2 with MATLAB

filtering.

I. INTRODUCTION

 Computation models have experienced a

significant change since the emergence of computer

networks, which allow heterogeneous computers to

communicate with each other. During the past two

decades, several interconnected computers have

replaced most centralized systems. This Factor has

led to more computing power, increased flexibility,

and better performance/price ratio.

However, at the same time, we also face many new
challenges and risks with networked computing, such

as lack of communication reliability, coordination,

resource management, and so on. As more and more

computer networks are brought into electronic

commerce, transaction management, and even

national defense, people begin to pay increasing

attention to system security.

II. NETWORK SECURITY AND POTENTIAL

THREATS

 There are a number of security issues for a

computer network environment [1]:

 Availability: The system must be functional and

correctly provide services.

 Confidentiality: The data transmitted from one

system must be accessible only to the authorized

parties.

 Authentication: The identity associated with the

data must be correct. The identity can apply to a
user, host, or software component.

 Integrity: The processed or transmitted data can

be modified only by the authorized parties.

 Non-repudiation: Neither the sender nor the

receiver of data can deny the fact of data

transmission.

.

A. Intrusion Detection

 As defined by Heady et al. [2], an intrusion is

any set of actions that attempt to comprise the

integrity, confidentiality, or availability of a resource.

Intrusion leads to violations of the security policies of
a computer system, such as unauthorized access to

private information, malicious break-in into a

computer system, or rendering a system unreliable or

unusable.

A full-blown network security system should include

the following subsystems:

 Intrusion Detection Subsystem: Distinguishes a

potential intrusion from a valid network

operation.

 Protection Subsystem: Protects the network and

security system from being compromised by
network intrusions.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Kamaljeet Singh & Umesh Sehgal / IJCTT, 67(4), 67-73, 2019

68

 Reaction Subsystem: This part traces an

intrusion's origin or fights back against the

hackers.

This thesis focuses on the intrusion detection
subsystem, which constitutes the first line of defense

for a computer network system. There are a number

of approaches in this field. They fall into three

primary categories: anomaly detection, misuse

detection, and hybrid schemes.

 The anomaly detection approach is based on

a model of normal activities in the system. This

model can either be predefined or established through

techniques such as machine learning. An anomaly

will be reported once there is a significant deviation

from this model. By contrast, a misuse detection

approach defines specific user actions that constitute
misuse and uses rules for encoding and detecting

known intrusions [3]. The hybrid detection approach

uses a combination of anomaly and misuse detection

techniques.

III. KEY CONTRIBUTIONS

 Packet filtering is a critical technique in network

management, firewall strategy, and intrusion

detection. However, the existing packet filtering

systems have a number of limitations in system

efficiency, flexibility, and scalability. For instance, a

packet filter for one protocol suite cannot easily be

changed to fit another. In addition, most packet filters

suffer from significant performance degradation as

the number of packet patterns increases.
 In this thesis, we present a novel approach

for constructing a real-time packet-filtering module

that can be used for network intrusion detection

purposes. One of the main contributions of our

approach is a specification language designed for

describing intrusion patterns and reactions. This

language provides a number of features that

distinguish it from other specification languages used

for intrusion detection or packet filterings, such as

protocol independence and type safety. Another

important focus of our work is the development of
fast pattern-matching algorithms (for packet filters)

that are insensitive to the number of patterns.

A. Synopsis Organization
 We briefly review the TCP/IP (Transmission

Control Protocol/Internet Protocol) protocol suite and

several security holes in the design and

implementation of TCP/IP. Chapter 3 surveys some

existing techniques in building a secure computer

network system. We also discuss some general issues

on packet filtering, which is one of the main

techniques in network intrusion detection. Chapter 4
gives a detailed description of our specification

language and its application to intrusion detection.

Chapter 5 discusses the issues in designing and

implementing our packet-filtering module. The

primary concern is to reduce the processing time of a

packet filter. In the last chapter, we provide some

experimental results from our packet filter
performance testing and summarize our work.

IP is the workhorse protocol of the TCP/IP protocol

suite. It provides an unreliable, connectionless

datagram delivery service. All the TCP, UDP (User

Datagram Protocol).

Fig. 1.1 TCP/IP Protocol Hierarchy

 ICMP (Internet Control Message Protocol) and

IGMP (Internet Group Management Protocol) data

are transmitted as IP datagrams [4].

 An IP header has information like source IP

address and destination IP address, which plays an

important role in routing a packet around the

networks. A detailed description of the IP header can

be found in [4]. Figure 2.2 shows the structure of a
normal IP header.

Fig. 1.2 IP Header

 Delivering a packet to the correct destination is

non-trivial, especially in a large-scale network. Each

intermediate routing device makes its best effort to

deliver the IP packet, but there is no guarantee that it

will reach its destination finally. So, a packet can be

lost, duplicated, or delivered out of order [4]. It is the

task of higher-layer protocols to correct such errors.

Kamaljeet Singh & Umesh Sehgal / IJCTT, 67(4), 67-73, 2019

69

UDP is a transport layer protocol, but it does not offer

much functionality over and above IP. The port

numbers in the UDP header identify the sending

process and the receiving process [4], while the

checksum provides the limited ability for error
detection (Figure 2.3).

Fig. 1.3 UDP Header

However, due to its simplicity and low overhead

compared to connection-oriented protocols, UDP is

suitable for designing simple request/reply

application protocols, such as DNS (Domain Name

System), SNMP (Simple Network Management

Protocol), and so on.

B. TCP

 TCP is built on top of the IP layer, which is

unreliable and connectionless. But TCP provides the

higher layer application a reliable connection-oriented

service. Each TCP connection requires an established

procedure and a termination step between

communication peers as the tradeoff. TCP also

provides sequencing and flow control.

 A TCP header occupies 20 bytes without any

option, as shown in Figure 2.4. The sequence number

is essential in keeping the sending and receiving
datagram in proper order.

Fig. 1.4 TCP Header

 There are six flag bits within a TCP header, namely

URG, ACK, PSH, RST, SYN, and FIN, each of

which has a special meaning in connection

establishment, connection termination, or other

control phases. Window size, which specifies how

many bytes of data can be accepted each time by the

receiving side, is advertised between the two
communication peers for flow control.

 TCP establishes a connection in three steps,

commonly known as a three-way handshake. Figure

2.5 shows a typical three-way handshake procedure

between a source host S and a destination host D.

Fig. 1.5 Three-Way Handshake

 First, S sends an SYN packet to D to establish a

connection. Meanwhile, S sets its own ISN (Initial
Sequence Number) in the sequence number field of

the packet. Upon receiving the request packet, D

sends back an SYN_ACK packet as the

acknowledgment, including its ISN and the

incremented ISN from S. As the acknowledgment

packet reaches the source host S, S immediately

transmits an ACK packet back to D. In the last ACK

packet, S needs to include the incremented ISN of D

as the confirmation of the connection. At this point,

the connection has been set up. One extra point is to

suppose that host S does not send any SYN packet but

receives an SYN_ACK packet from host D; it will
then send back an RST packet to reset the connection.

IV. CONCLUSION

APPENDIX A PACKET DATA STRUCTURES

FOR ASL
Ethernet Header:

#define ETHER_LEN 6

struct ether_hdr

{

 byte

 e_dst[ETHER_LEN];

 byte

 e_src[ETHER_LEN];

 short e_type;

}

ARP:

#define ETHER_IP 0x0800

#define ETHER_ARP 0x0806

struct arp_hdr : struct ether_hdr

with e_type == ETHER_ARP

{

 short ar_hrd; /* Format of

hardware address */

Kamaljeet Singh & Umesh Sehgal / IJCTT, 67(4), 67-73, 2019

70

 short ar_pro; /* Format of

protocol address */

 byte ar_hln; /* Length of

hardware address */

 byte ar_pln; /* Length of

protocol address */

 short ar_op; /* ARP

opcode (command). */

}

/* ARP protocol HARDWARE identifiers

*/

#define ARPHRD_ETHER 1

 /* Ethernet 10Mbps */

/* ARP protocol PROTOCOL identifiers

*/

#define ARPPRO_IP 0x0800

 /* IP */

/* ARP protocol opcodes */

#define ARPOP_REQUEST 1

 /* ARP request */

#define ARPOP_REPLY 2

 /* ARP reply */

#define ARPOP_RREQUEST 3

 /* RARP request */

#define ARPOP_RREPLY 4

 /* RARP reply */

struct ether_ip_arp : struct arp_hdr

with

(ar_hrd == ARPHRD_ETHER) &&

(ar_pro == ARPPRO_IP)

{

 byte

 arp_sha[ETHER_LEN];/* sender

hardware address */

 int arp_spa;

 /* sender protocol address */

 byte

 arp_tha[ETHER_LEN];/* target

hardware address */

 int arp_tpa;

 /* target protocol address */

}

IP:

struct ip_hdr : struct ether_hdr

with e_type == ETHER_IP && ihl == 5

{

 bit version[4];

 /* ip version */

 bit ihl[4];

 /* header length */

 byte tos;

 /* type of service */

 short tot_len;

 /* total length */

 short id;

 /* identification */

 bit flag[3];

 /* flags */

 bit frag_off[13];

 /* fragment offset */

 byte ttl;

 /* time to live */

 byte protocol;

 /* protocol */

 short check_sum;

 /* header checksum */

 ip_addr s_addr;

 /* source ip address */

 ip_addr d_addr;

 /* destination address */

}

struct ip_pkt : struct ip_hdr

{

 byte ip_data[tot_len - ihl];

}

ICMP:

/* IP protocol PROTOCOL identifiers.

*/

#define IP_ICMP 0x0001

 /* ICMP */

#define IP_IGMP 0x0002

 /* IGMP */

#define IP_TCP 0x0006

 /* TCP */

#define IP_UDP 0x0011

 /* UDP */

struct icmp_hdr : struct ip_hdr with

protocol == IP_ICMP

{

 byte icmp_type;

 /* icmp message type */

 byte icmp_code;

 /* icmp message code */

 short icmp_csum;

 /* checksum for entire message

*/

}

struct icmp_pkt : struct icmp_hdr

{

 byte icmp_data[tot_len - ihl

- sizeof(icmp_hdr)];

}

#define ICMP_ECHO_TYPE_REQUEST

 8

#define ICMP_ECHO_TYPE_REPLY

 0

#define ICMP_ECHO_CODE

 0

Kamaljeet Singh & Umesh Sehgal / IJCTT, 67(4), 67-73, 2019

71

struct icmp_echo_request : struct

icmp_hdr with

 (icmp_type ==

ICMP_ECHO_TYPE_REQUEST)

 && (icmp_code ==

ICMP_ECHO_CODE)

{

 byte icmp_echoid;

 /* identifier */

 byte icmp_echoseq;

 /* sequence number */

 byte

 icmp_echodata[tot_len - ihl -

sizeof(icmp_hdr) - 2];

}

struct icmp_echo_reply : struct

icmp_hdr with

 (icmp_type ==

ICMP_ECHO_TYPE_REPLY) && (icm_code

== ICMP_ECHO_CODE)

{

 byte icmp_echoid;

 /* identifier */

 byte icmp_echoseq;

 /* sequence number */

 byte

 icmp_echodata[tot_len - ihl -

sizeof(icmp_hdr) - 2];

}

#define ICMP_DESUNREA_TYPE

 3

struct icmp_unreach : struct

icmp_hdr with

icmp_type ==

ICMP_DESUNREA_TYPE

{

 short icmp_reserved;

 ip_hdr icmp_iphdr;

 byte icmp_data[8];

}

#define ICMP_SRCQUEN_TYPE 4

#define ICMP_SRCQUEN_CODE 0

struct icmp_squench : struct

icmp_hdr with

icmp_type == ICMP_SRCQUEN_TYPE

{

short icmp_reserved;

ip_hdr icmp_iphdr;

byte icmp_data[8];

}

UDP:

struct udp_hdr : struct ip_hdr with

protocol == IP_UDP

{

 byte udp_sport; /*

source port number */

 byte udp_dport; /*

destination port number */

 byte udp_len; /*

header + data length */

 byte udp_csum; /*

checksum for header & data */

}

struct udp_pkt : struct udp_hdr

{

 byte udp_data[udp_len -

sizeof(udp_hdr)];/* data */

}

TCP:

struct tcp_hdr : struct ip_hdr with

protocol == IP_TCP

{

 short tcp_sport;

 /* source port number */

 short tcp_dport;

 /* destination port number */

 int tcp_seq;

 /* sequence number */

 int tcp_ack;

 /* acknowledge number */

 bit tcp_hlen[4];

 /* header length */

 bit tcp_reserved[6];

 /* reserved */

 bit tcp_urg;

 /* flags */

 bit tcp_ack;

 bit tcp_psh;

 bit tcp_rst;

 bit tcp_syn;

 bit tcp_fin;

 short tcp_win;

 /* window size */

 short tcp_csum;

 /* checksum for header & data

*/

 short tcp_urp;

 /* urgent pointer */

}

struct tcp_pkt : struct tcp_hdr

{

 byte tcp_data[tot_len - ihl -

tcphlen];

}

DNS:

#define DNS_PORT 53

Kamaljeet Singh & Umesh Sehgal / IJCTT, 67(4), 67-73, 2019

72

struct dns_hdr: struct udp_hdr with

 (udp_sport == DNS_PORT) ||

(udp_dport == DNS_PORT)

 /* either to a dns port or

from dns port */

{

 short dns_id;

 /* identifier */

 short dns_flags;

 /* flags */

 short dns_nques;

 /* No. of questions */

 short dns_nans;

 /* No. of answers RR */

 short dns_nauth;

 /* No. of authority RRs */

 short dns_nadd;

 /* No. of additional RRs */

}

struct dns_ques

{

 string dns_qname;

 /* query name */

 short dns_qtype;

 /* query type */

 short dns_qclass;

 /* query class */

}

struct dns_rr_hdr

{

 string dname;

 /* domain name */

 short type;

 /* RR type */

 short class;

 /* RR class */

 int ttl;

 /* time to live */

}

#define DNS_QUERY_A 1

struct dns_rr_A : struct dns_rr_hdr

rrhdr with rrhdr.type == DNS_QUERY_A

{

 short rdlen; /*

resource data length */

 ip_addr rdata[rdlen];

}

struct dns_pkt_A: struct dns_hdr

dnshdr

{

 struct dns_ques

 dques[nques]; /* dns

questions */

 struct dns_rr_A dans[nans];

 /* dns answer RRs */

 struct dns_rr_A

 dauth[nauth]; /* dns

authority RRs */

 struct dns_rr_A dadd[nadd];

 /* dns additional RRs */

}

RIP:

#define RIP_PORT 520

struct rip_hdr: struct udp_hdr with

 (udp_sport == RIP_PORT) ||

(udp_dport == RIP_PORT)

 /* either to a rip port or

from rip port */

{

 byte rip_command;

 /* rip command */

 byte rip_version;

 /* rip version */

 short rip_zero;

 /* must be zero */

}

struct rip_rec

{

 short rip_afid;

 /* address family identifier

*/

 short rip_zero;

 /* must be zero */

 int rip_ipaddr;

 /* ip address */

 int rip_zero[2];

 /* must be zero */

 int rip_metric;

 /* metric */

}

strcut rip_pkt : struct rip_hdr

{

 rip_rec riprec[(udp_len -

sizeof(struct rip_hdr))

 / sizeof(struct

rip_rec)];

}

REFERENCES

[1] Larry J. Hughes, Jr. Useful Internet Security Techniques,

New Riders Publishing, Indianapolis, IN, 1995.

[2] R.Heady, G. Luger, A. Maccabe, and B. Mukherjee. A

Method To Detect Intrusive Activity in a Networked

Environment. In Proceedings of the 14th National Computer

Security Conference, pages 362-371, October 1991.

[3] Abdelaziz Monnji. Languages and Tools for Rule-Based

Distributed Intrusion Detection, Ph.D. thesis, Faculties

Universitaires, Notre-Dame de la Paix, Belgium, September

1997.

[4] W. R. Stevens. TCP/IP Illustrated Vol. 1 – The Protocols,

Addison-Wesley Publishing Company, Inc. Reading, MA,

1994.

Kamaljeet Singh & Umesh Sehgal / IJCTT, 67(4), 67-73, 2019

73

[5] S.M.Bellovin. Security Problems in the TCP/IP Protocol

Suite, Computer Communications Review, Vol. 19, No. 2,

pp. 32-48, April 1989.

[6] Morris R. A Weakness in the 4.2 BSD UNIX TCP/IP

Software, Computer Science Technical Report No 117,

AT&T Bell Laboratories, Murray Hill, NJ, 1985.

[7] CERT. TCP SYN Flooding and IP Spoofing Attacks,

Carnegie Mellon University, Pittsburgh, PA, September 1996

[8] C.Cobb and S. Cobb. Denial of Service, Secure Computing,

pp.58-60, July 1997.

[9] C.L.Schuba, I.V. Krsul, Makus G. Kuhn, E.H. Spafford, A.

Sundaram, D. Zamboni. Analysis of a Denial of Service

Attack on TCP, Purdue University, West Lafayette, 1996.

[10] S.Dash. Integration of DNSSEC (key-server) with Ssh

Application, MS thesis, Iowa State University, Ames, IA,

1997.

[11] W.R.Stevens. UNIX Network Programming Vol. 1 –

Network APIs: Sockets and XTI, Second Edition, Prentice

Hall PTR, Upper Saddle River, NJ, 1998.

[12] Vern Paxson. Bro: A System for Detecting Network Intruders

in Real-Time, Lawrence Berkeley National Laboratory,

Berkeley, CA, 1998.

[13] R.C.Sekar, R. Ramesh, I. V. Ramakrishnan. Adaptive Pattern

Matching, Bellcore, Morristown, NJ, 1993.

[14] Steven McCanne, Van Jacobson. The BSD Packet Filter: A

New Architecture for User-level Packet Capture, Lawrence

Berkeley Laboratory, Berkeley, CA, 1992.

[15] Biswanath Mukherjee, L. Todd Heberlein, Karl N. Levitt.

Network Intrusion Detection, IEEE Network, pp.26-41,

May/June 1994.

[16] Frederick B. Cohen. A Node on Distributed Coordinated

Attacks, Computer & Security, pp.103-121, v15, 1996.

[17] Steven Cheung, Karl N. Levitt. Protecting Routing

Infrastructures from Denial of Service Using Cooperative

Intrusion Detection, University of California, Davis, CA,

1997.

[18] Christoph L. Schuba. Addressing Weakness in the Domain

Name System Protocol, COAST Laboratory, Purdue

University, West Lafayette, IN, 1993

[19] Eugene H. Spafford. The Internet Worm Incident, Technical

Report CSD-TR-993, Purdue University, West Lafayette, IN,

September 19, 1991

	We briefly review the TCP/IP (Transmission Control Protocol/Internet Protocol) protocol suite and several security holes in the design and implementation of TCP/IP. Chapter 3 surveys some existing techniques in building a secure computer netw...
	APPENDIX A PACKET DATA STRUCTURES FOR ASL

